

Christine-GIS

Public interface for vector data plug-ins

Specification of public interface version 1.1

Christine-GIS Released: March 2009

Revised: April 2021

Christine-GIS Public interface for vector data plug-ins
 version 1.1

- 1 -

Content

1. Introduction … 2
2. Used data types … 3
3. How it works … 5
 3.1. Adding vector data to a view … 5
 3.2. Removing vector data from a view … 5
 3.3. Drawing and printing vector data … 5
 3.4. Showing properties of theme based on vector data … 5
 3.5. Setting properties of theme based on vector data … 6
 3.6. Converting vector data … 6
 3.7. Bulding or removing spatial index … 6
 3.8. Saving properties of theme based on a vector data to a project file … 6
 3.9. Reading properties of theme based on a vector data from a project file … 7
4. Public interface of library … 8
 4.1. Minimal functional requirements … 9
5. Installation of your own library … 11
 5.1. Format identification number (ID) … 11
6. Libraries that come with Christine … 12
7. Example … 13
 7.1. How to compile the example … 13
 7.2. Source code … 13

© 2008 - 2021 Josef Genserek
All Rights Reserved.
The information contained in this document is subject to change without notice.

The names of other companies and products herein are trademarks or registered trademarks of their
respective trademark owners.

Christine-GIS Public interface for vector data plug-ins
 version 1.1

- 2 -

1. Introduction

Document describes interface for dynamic linked libraries, which can be used for reading and drawing spatial
vector data. The interface allows you create your own library and in this way you can extent Christine's list of
known vector formats. If you create your own library, it is strictly recommended to create an installation
program for installing the library. See Installation of your own library chapter for some hints.
Document describes version 1.1 of the interface. The interface is supported by Christine-GIS version 5.1 and
higher. Christine-GIS Viewer does not support this interface. The material in this document reflects the
information available at the time of publication and is essentially identical to the information contained in the
Christine's help file. In some cases, more up-to-date information may be available at Christine's web site
(www.christine-gis.com).

Christine-GIS Public interface for vector data plug-ins
 version 1.1

- 3 -

2. Used data types

Most of used data types are common data types used by Microsoft Windows API.

BOOL - A boolean type (should be TRUE or FALSE), stored as signed integer

BYTE* - A pointer to array of bytes

COLORREF - A 32-bit value used to specify a RGB color. The low-order byte contains a value for the
relative intensity of red; the second byte contains a value for green; and the third byte contains a value for
blue. The high-order byte must be zero. The maximum value for a single byte is 0xFF.

CRS2CRS – A pointer to function for conversion between coordinate systems. Pointer to the function is
declared in following way:
typedef BOOL (__cdecl *CRS2CRS)(int, int, double*, double*, double*)

Function returns TRUE if conversion is successful done, otherwise returns FALSE. First parameter of the
function is count of points for conversion. Second parameter is offset between coordinates in array of
coordinates. Third, fourth and fifth parameters are pointers to arrays of x, y and z coordinates.

double - A 64-bit signed floating point number

double* - A pointer to 64-bit signed floating point number

DWORD - A 32-bit unsigned integer

EXTENT - Structure that defines ranges of X, Y, Z coordinates and M values
typedef struct _EXTENT {

 double xMin; // specifies minimum value of X coordinate

 double yMin; // specifies minimum value of Y coordinate

 double xMax; // specifies maximum value of X coordinate

 double yMax; // specifies maximum value of Y coordinate

 double zMin; // specifies minimum value of Z coordinate (ignored)

 double zMax; // specifies maximum value of Z coordinate (ignored)

 double mMin; // specifies minimum of M value (ignored)

 double mMax; // specifies maximum of M value (ignored)

} EXTENT;

EXTENT* - A pointer to extent structure

FALSE - Boolean value, stored as signed integer with zero value

HDC - Handle to a device context

HWND - Handle to a window

int - A 32-bit signed integer

LONG - A 32-bit signed integer

NULL - Zero value

RECT - Structure that defines the coordinates of the upper-left and lower-right corners of a rectangle
typedef struct _RECT {

 LONG left; // x-coordinate of the upper-left corner of the rectangle

 LONG top; // y-coordinate of the upper-left corner of the rectangle

 LONG right; // x-coordinate of the lower-right corner of the rectangle

 LONG bottom; // y-coordinate of the lower-right corner of the rectangle

} RECT;

Christine-GIS Public interface for vector data plug-ins
 version 1.1

- 4 -

RECT* - A pointer to rectangle structure

TCHAR* - A pointer to array of chars (string)

TRUE - Boolean value, stored as non zero signed integer

UINT - A 32-bit unsigned integer

VECTORFORMATSTRUCT - structure for saving necessary informations for communication between core
of Christine and dynamic linked library
typedef struct _VECTORFORMATSTRUCT {

 // mandatory part of structure

 DWORD dwSize; // size of this structure (including optional part)

 COLORREF mapBkColor; // background color of map

 // optional part of structure

 // content of optional part depends on implementation of plug-in module

} VECTORFORMATSTRUCT;

void - Used as a function‘s return type, specifies that the function does not return a value

void* - A pointer to unspecified data type or structure ("universal pointer")

Christine-GIS Public interface for vector data plug-ins
 version 1.1

- 5 -

3. How it works

Christine calls functions of the public interface described in chapter Public interface of library when it needs.
Set of called functions depends on type of operation. Library is loaded before the operation starts and it is
released after operation is done. This chapter describes all supported operations.

 3.1 Adding vector data to a view

Christine looks through Windows registry for available vector formats. Christine uses values of FormatName,
FormatExtensions and FormatID keys in order to complete list of known formats and fills combo box in open
dialog. If user chooses a vector format that uses the interface, Christine will look for value of LibFileName
key in Windows registry in order to be able to load the library. After the library is loaded Christine calls
Initialize function. The Initialize function returns pointer to VECTORFORMATSTRUCT structure. You can use
the structure for storing pointers to your own objects, memory blocks, temporary files, etc. Christine allocates
memory and stores the structure. The structure is used by others functions, so you can use the structure for
sharing any data you need among functions.

List of called functions during the operation:

void* Initialize(TCHAR* fileName)

EXTENT* GetExtent(void* pStruct)

 3.2 Removing vector data from a view

When a theme that uses this interface is about to remove from a view Christine calls Release function. In the
Release function you can destroy all object you created, clean up memory, delete temporary files, etc.

List of called functions during the operation:

void Release(void* pStruct)

 3.3 Drawing and printing vector data

Christine loads library to memory and fills mapBkColor member in VECTORFORMATSTRUCT structure.
After this it calls Draw function. When drawing operation is done, it releases the library.

List of called functions during the operation:

void Draw(HDC hDC, EXTENT* drawExtent, RECT* clipRect, int unitSize, void*

pStruct, CRS2CRS Crs2Crs, DWORD* pId1, volatile DWORD* pId2)

 3.4 Showing properties of theme based on vector data

Before properties dialog is shown Christine calls set of functions in order to get all necessary informations.

List of called functions during the operation:

EXTENT* GetExtent(void* pStruct)

TCHAR* GetFormatName(void* pStruct)

Christine-GIS Public interface for vector data plug-ins
 version 1.1

- 6 -

TCHAR* GetFormatVersion(void* pStruct)

DWORD GetInterfaceVersion()

BOOL HasSpatialIndex(void* pStruct)

BOOL SupportsSpatialIndex()

 3.5 Setting properties of theme based on vector data

When properties dialog is shown, user can press Change Settings button in Settings page. After this
Christine calls set of functions in order to allow user to change settings of display vector file in your own
dialog.

List of called functions before dialog is shown:

TCHAR* GetFormatName(void* pStruct)

void* ChangeSettings(HWND hWndParent, void* pStruct)

List of called functions after new settings is confirmed:

BOOL HasSpatialIndex(void* pStruct)

DWORD GetInterfaceVersion()

BOOL SupportsReloading()

BOOL NeedsReloading(void* pStruct)

BOOL Reload(void* pStruct)

 3.6 Converting vector data

Christine looks for value of LibFileName key in Windows registry and loads dynamic-linked library. After this
it calls SupportsConversionVectorFormat2Shp or SupportConversionShp2VectorFormat depend on direction
of conversion and releases library. If the function returns TRUE, Christine will use values of FormatName,
FormatExtensions and FormatID keys in order to add the format into conversion dialog. If user chooses a
vector format that uses the interface, Christine will look for value of LibFileName key in Windows registry
again, loads library and calls ConvertVectorFormat2Shp or ConvertShp2VectorFormat function. After the
conversion process is done, Christine will release library.

List of called functions during the operation:

BOOL ConvertVectorFormat2Shp(TCHAR* shpFileName, TCHAR* vectorFormatFileName,

HWND hWndMainFrame, void* pStruct, CRS2CRS Crs2Crs, BOOL bUseDefaultSettings)

BOOL ConvertShp2VectorFormat(TCHAR* shpFileName, TCHAR* vectorFormatFileName,

HWND hWndMainFrame, CRS2CRS Crs2Crs, BOOL bUseDefaultSettings, BYTE* selection)

DWORD GetInterfaceVersion()

BOOL SupportsConversionVectorFormat2Shp()

BOOL SupportsConversionShp2VectorFormat()

 3.7 Building or removing spatial index

Christine looks into Windows registry for value of LibFileName key and loads dynamic-linked library. After
this it calls SupportsSpatialIndex function. If the function returns TRUE, Christine calls BuildSpatialIndex or
RemoveSpatialIndex function. After action is done, Christine will release library.

List of called functions during the operation:

void BuildSpatialIndex(void* pStruct)

void RemoveSpatialIndex(void* pStruct)

Christine-GIS Public interface for vector data plug-ins
 version 1.1

- 7 -

BOOL SupportsSpatialIndex()

 3.8 Saving properties of theme based on a vector data to a project file

Christine looks into Windows registry for value of LibFileName key, loads library to memory and calls
WriteSettingsToStringLine function. Function WriteSettingsToStringLine uses vector format structure in order
to create string line with settings of theme based on a vector data. Content of the string line depends on your
needs. Function WriteSettingsToStringLine returns pointer to the string line. The string line must be
terminated by binary zero (it must be a null-terminated string). Christine saves the string line into project file
as value of key called vectorThemeSettings.

List of called functions during the operation:

TCHAR* WriteSettingsToStringLine(void* pStruct)

 3.9 Reading properties of theme based on a vector data from a project file

Christine looks into Windows registry for value of LibFileName key, loads library to memory and calls
ReadSettingsFromStringLine function. Function ReadSettingsFromStringLine uses a string line with saved
settings in order to set vector format settings structure. Content of the string line was created by
WriteSettingsToStringLine function (see 3.8 chapter). The string line is terminated by binary zero (it is a null-
terminated string). Function ReadSettingsFromStringLine will return pointer to changed settings structure or
NULL if failed.

List of called functions during the operation:

void* ReadSettingsFromStringLine(TCHAR* settingsStr, void* pStruct)

Christine-GIS Public interface for vector data plug-ins
 version 1.1

- 8 -

4. Public interface of library

This chapter describes public interface of the library. Each function in the public interface has exactly defined
behaviour and it is called in situations described in chapter How it works.

void BuildSpatialIndex(void* pStruct)

Builds spatial index. Parameter pStruct is a pointer to structure born during initialization process, see chapter
3.1 for details.

void* ChangeSettings(HWND hWndParent, void* pStruct)

Shows dialog with settings for vector file. Parameter hWndParent is handle of parent window for the dialog.
Parameter pStruct is a pointer to structure saved during initialization process, see chapter 3.1 for details.
Function returns pointer to modified structure or NULL if no changes was made in the structure or user press
Cancel button.

BOOL ConvertVectorFormat2Shp(TCHAR* shpFileName, TCHAR* vectorFormatFileName,

HWND hWndMainFrame, void* pStruct, CRS2CRS Crs2Crs, BOOL bUseDefaultSettings)

Converts vector data to ESRI shapefile and saves it to a file. Parameter shpFileName is full file name of the
shapefile (it is in fact output file). Parameter vectorFormatFileName is full file name of vector format file (it is
in fact input file). Parameter hWndMainFrame is handle to Christine's main window. Parameter pStruct is a
pointer to structure saved during initialization process, see chapter 3.1 for details. Parameter Crs2Crs is
pointer to function for conversion between coordinate systems. If no conversion is needed parameter
Crs2Crs is NULL. Parameter bUseDefaultSetting indicates if you should use default settings for conversion
or if you should display a dialog for modifying settings of conversion. Function returns TRUE if shapefile was
written successfully, otherwise returns FALSE.

BOOL ConvertShp2VectorFormat(TCHAR* shpFileName, TCHAR* vectorFormatFileName,

HWND hWndMainFrame, CRS2CRS Crs2Crs, BOOL bUseDefaultSettings, BYTE* selection)

Converts ESRI shapefile to vector data and saves it to a file. Parameter shpFileName is full file name of the
shapefile (it is in fact input file). Parameter vectorFormatFileName is full file name of vector format file (it is in
fact output file). Parameter hWndMainFrame is handle to Christine's main window. Parameter Crs2Crs is
pointer to function for conversion between coordinate systems. If no conversion is needed parameter is
NULL. Parameter bUseDefaultSetting indicates if you should use default settings for conversion or if you
should display a dialog for modifying settings of conversion. Parameter selection is pointer to array of bytes
indicating selection (nonzero value means that apropriate record is selected). You can use this array for
converting only selected records. If all records needs to be converted, parameter selection is NULL. Returns
TRUE if vector format file was written successfully, otherwise returns FALSE.

void Draw(HDC hDC, EXTENT* drawExtent, RECT* clipRect, int unitSize, void*

pStruct, CRS2CRS Crs2Crs, DWORD* pId1, volatile DWORD* pId2)

Draws vector data on device context with handle hDC. Parameter drawExtent is extent for drawing in map
units. Parameter clipRect is clipping rectangle in screen units. Parameter unitSize is size of one unit in pixels.
You can use value of this parameter for designing size or width of symbols for drawing a feature. Parameter
pStruct is a pointer to structure saved during initialization process, see chapter 3.1 for details. Parameter
Crs2Crs is pointer to function for conversion between coordinate systems. If no conversion is needed
parameter is NULL. Parameters pId1 and pId2 are pointers to numeric identificators. If the values of
identificators are the same you can continue drawing, but if pId2 is changed you should stop drawing
immediately and clean up the memory.

EXTENT* GetExtent(void* pStruct)

Returns pointer to raw (unprojected) extent of vector data. Parameter pStruct is a pointer to structure saved
during initialization process, see chapter 3.1 for details.

TCHAR* GetFormatName(void* pStruct)

Returns pointer to string with name of vector format. Parameter pStruct is a pointer to structure saved during
initialization process, see chapter 3.1 for details.

TCHAR* GetFormatVersion(void* pStruct)

Returns pointer to string with version of vector data format. Parameter pStruct is a pointer to structure saved
during initialization process, see chapter 3.1 for details.

Christine-GIS Public interface for vector data plug-ins
 version 1.1

- 9 -

DWORD GetInterfaceVersion()

Returns version of the interface. In high word is major version (1) and in low word is minor version (1).

BOOL HasSpatialIndex(void* pStruct)

Returns TRUE if vector data have built spatial index. Parameter pStruct is a pointer to structure saved during
initialization process, see chapter 3.1 for details.

void* Initialize(TCHAR* fileName)

Returns pointer to structure VECTORFORMATSTRUCT. If function failed it should return NULL. Christine
will save contents of the structure and uses it as parameter when calling other functions of this interface.
Parameter fileName is full file name of vector data file.

BOOL NeedsReloading(void* pStruct)

Returns TRUE if vector data have to be reloaded. It is useful when you must reflect new settings of loaded
data. Parameter pStruct is a pointer to structure saved during initialization process, see chapter 3.1 and 3.5
for details.

void* ReadSettingsFromStringLine(TCHAR* settingsStr, void* pStruct)

Reads settings from string line settingsStr when a project file is openning. The string line is terminated by
binary zero. Parameter pStruct is a pointer to structure saved during initialization process, see chapter 3.1 for
details. Function returns pointer to changed settings structure or NULL if failed.

void Release(void* pStruct)

Destroys all object you created, cleans up memory, deletes temporary files, etc. Parameter pStruct is a
pointer to structure saved during initialization process, see chapters 3.1 and 3.2 for details.

BOOL Reload(void* pStruct)

Reloads vector data. Parameter pStruct is a pointer to structure saved during initialization process, see
chapters 3.1 and 3.5 for details.

void RemoveSpatialIndex(void* pStruct)

Removes spatial index. Parameter pStruct is a pointer to structure saved during initialization process, see
chapter 3.1 for details.

BOOL SupportsConversionVectorFormat2Shp()

Returns TRUE if the library supports conversion from vector format to shapefile, otherwise returns FALSE.

BOOL SupportsConversionShp2VectorFormat()

Returns TRUE if the library supports conversion from shapefile to vector format, otherwise returns FALSE.

BOOL SupportsReloading()

Returns TRUE if the library supports reloading of vector data, otherwise returns FALSE.

BOOL SupportsSpatialIndex()

Returns TRUE if the library supports spatial indexing, otherwise returns FALSE.

TCHAR* WriteSettingsToStringLine(void* pStruct)

Returns pointer to string line with settings. The string line is written into Christine's project file when you save
project.

 4.1 Minimal functional requirements

Minimal requirement is to draw vector data in a view and to print the vector data to printer. To create
functional library that do this you must implement following functions with described behaviour:

void BuildSpatialIndex(void* pStruct)

Christine-GIS Public interface for vector data plug-ins
 version 1.1

- 10 -

Does nothing.

void* ChangeSettings(HWND hWndParent, void* pStruct)

Shows dialog with information message „There are no adjustable settings“ and returns NULL.

BOOL ConvertVectorFormat2Shp(TCHAR* shpFileName, TCHAR* vectorFormatFileName,

HWND hWndMainFrame, void* pStruct, CRS2CRS Crs2Crs, BOOL bUseDefaultSettings)

Returns FALSE.

BOOL ConvertShp2VectorFormat(TCHAR* shpFileName, TCHAR* vectorFormatFileName,

HWND hWndMainFrame, CRS2CRS Crs2Crs, BOOL bUseDefaultSettings, BYTE* selection)

Returns FALSE.

void Draw(HDC hDC, EXTENT* drawExtent, RECT* clipRect, int unitSize, void*

pStruct, CRS2CRS Crs2Crs, DWORD* pId1, volatile DWORD* pId2)

Draws vector data on device context with handle hDC.

EXTENT* GetExtent(void* pStruct)

Returns pointer to extent of vector data.

TCHAR* GetFormatName(void* pStruct)

Returns pointer to string with name of data format.

TCHAR* GetFormatVersion(void* pStruct)

Returns version of vector data format.

DWORD GetInterfaceVersion()

Returns version of the interface. In high word is major version (1) and in low word is minor version (1).

BOOL HasSpatialIndex(void* pStruct)

Returns FALSE.

void* Initialize(TCHAR* fileName)

Creates VECTORFORMATSTRUCT object and returns pointer to it.

BOOL NeedsReloading(void* pStruct)

Returns FALSE.

void* ReadSettingsFromStringLine(TCHAR* settingsStr, void* pStruct)

Returns pointer to VECTORFORMATSTRUCT object.

void Release(void* pStruct)

Does nothing.

BOOL Reload(void* pStruct)

Returns FALSE.

void RemoveSpatialIndex(void* pStruct)

Does nothing.

BOOL SupportsConversionVectorFormat2Shp()

Returns FALSE.

BOOL SupportsConversionShp2VectorFormat()

Returns FALSE.

BOOL SupportsReloading()

Returns FALSE.

BOOL SupportsSpatialIndex()

Returns FALSE.

Christine-GIS Public interface for vector data plug-ins
 version 1.1

- 11 -

TCHAR* WriteSettingsToStringLine(void* pStruct)

Returns pointer to string with zero length.

Christine-GIS Public interface for vector data plug-ins
 version 1.1

- 12 -

5. Installation of your own library

It is strictly recommended to create an installation program for installing the library. Installation program must
place library file to subfolder dlls in Christine's installation folder. Installation program must also write
following informations to Windows registry:

Key:
HKEY_LOCAL_MACHINE\Software\Christine-GIS\5.x\VectorFormats\[ID of format]

Values:
Name Value Type Max. length (byte)
LibFileName [library.dll] REG_SZ 255 Mandatory
FormatExtensions [*.xxx;*.xxxx] REG_SZ 63 Mandatory
FormatName Name of Vector Format REG_SZ 255 Mandatory
FormatID [ID of format] REG_DWORD 4 Mandatory

Example for Drawing Interchange File Format:

Key:
HKEY_LOCAL_MACHINE\Software\Christine-GIS\5.x\VectorFormats\50

Values:
Name Value
LibFileName dxf.dll
FormatExtensions *.dxf
FormatName Drawing Interchange File Format
FormatID 50

Note: Value FormatID must be the same as name of the key.

 5.1 Format identification number (ID)

If you want to create your own library for reading vector data, look at Christine's web site for free format IDs.
After you choose a free format ID, contact us and we will publish your choosen ID on Christine's web site to
avoid problems with duplicity. Format ID is used internally by Christine and by these metods in Christine's
script language: GetType(Number nType) from class Theme, ExportToBmp(String sFullFileName, Number
nType, Rect extent, Number nWidth, Number nHeight, Bool bCreateWorldFile) and AddTheme(String
sFullFileName, Number nType) from class View, ExportToVectorFormat(String sFullFileName, Number
nFormatID, Bool bUseDefaultSettings) from class FTheme, Export(String sFullFileName, Number
nOutputType) from class DSCTheme, ShowBmp(String sFullFileName, Number nDelay, Bool bFrame,
Number nType) from class MsgBox.

Recommended ranges of format IDs are following:

0 - 1000 for raster and vector data based on files (typically stored on a file system), range 0 - 100 is reserved
for Christine-GIS, 101 - 1000 is available for third-party developers

1001 - 2000 for raster and vector data based on a web service (typically generated by a map server and sent
to Christine), range 1001 - 1100 is reserved for Christine-GIS, 1101 - 2000 is available for third-party
developers

2001 - 3000 for raster and vector data stored in a geodatabase (for future use, not supported yet), range
2001 - 2100 is reserved for Christine-GIS, 2101 - 3000 is available for third-party developers

Christine-GIS Public interface for vector data plug-ins
 version 1.1

- 13 -

6. Libraries that come with Christine

Following libraries come with Christine-GIS version 5.1, that have implemented this interface. The libraries
are placed in subfolder dlls in Christine's installation folder.

Format name: Drawing Interchange File Format
Library file name: dxf.dll
Format ID: 50
Format extensions: *.dxf
Version of interface: 1.1
Supports conversion to shapefile: Yes
Supports conversion to vector format: Yes
Supports reloading: No
Supports spatial indexing: Yes

Format name: Keyhole Markup Language
Library file name: kml.dll
Format ID: 51
Format extensions: *.kml, *.kmz
Version of interface: 1.1
Supports conversion to shapefile: Yes
Supports conversion to vector format: Yes
Supports reloading: No
Supports spatial indexing: Yes

Format name: GPS Exchange Format
Library file name: gpx.dll
Format ID: 52
Format extensions: *.gpx
Version of interface: 1.1
Supports conversion to shapefile: Yes
Supports conversion to vector format: Yes
Supports reloading: No
Supports spatial indexing: Yes

Format name: OGC Geography Markup Language
Library file name: gml.dll
Format ID: 53
Format extensions: *.gml, *.xml
Version of interface: 1.1
Supports conversion to shapefile: Yes
Supports conversion to vector format: Yes
Supports reloading: Yes
Supports spatial indexing: Yes

Christine-GIS Public interface for vector data plug-ins
 version 1.1

- 14 -

7. Example

In this chapter we offer you C++ source code of an empty framework of dynamic linked library that uses the
interface. Code is tested in Microsoft Visual Studio 2012 enviroment.

 7.1 How to compile the example

This short chapter describes neccessary steps to compile source code in chapter 7.2. using Microsoft Visual
Studio 2012. Simply follow the instructions bellow.

❑ Run Microsoft Visual Studio 2012.
❑ From menu File select New and then choose Project. From categories of project types select Win32

in Visual C++ section. From installed templates select Win32 Project. Choose location for new
project that will be created and fill project name, then click OK button. In following two steps wizard
select „DLL" option and click Finish button.

❑ A project with dllmain.cpp file is created.
❑ Copy source code from chapter 7.2. to dllmain.cpp file.
❑ From Project menu choose projectName Properties (Alt + F7). Select Configuration

Properties/General section and set „Character Set“ option to „Not Set“. Now select Configuration
Properties/C/C++/Preprocesor and add to Preprocessor Definitions
„_CRT_SECURE_NO_WARNINGS“.

❑ From Build menu choose Build Solution command (F7).

 7.2 Source code

#include "stdafx.h"

#include <stdio.h>

#include <stdlib.h>

#include <windows.h>

typedef BOOL (__cdecl *CRS2CRS)(int, int, double*, double*, double*);

typedef struct _EXTENT { // extent of data

 double xMin;

 double yMin;

 double xMax;

 double yMax;

 double zMin;

 double zMax;

 double mMin;

 double mMax;

} EXTENT;

// map units

enum {

 map_units_unknown = 40244,

 map_units_kilometers = 40245,

 map_units_meters = 40246,

 map_units_decimeters = 40253,

 map_units_centimeters = 40247,

 map_units_millimeters = 40248,

 map_units_inches = 40251,

 map_units_feet = 40250,

 map_units_yards = 40254,

 map_units_statute_miles = 40249,

 map_units_nautical_miles = 40255,

 map_units_fathoms = 40256,

 map_units_chains = 40257,

 map_units_links = 40258,

 map_units_us_surveyors_inches = 40259,

 map_units_us_surveyors_feet = 40260,

 map_units_us_surveyors_yards = 40261,

Christine-GIS Public interface for vector data plug-ins
 version 1.1

- 15 -

 map_units_us_surveyors_chains = 40262,

 map_units_us_surveyors_statute_miles = 40263,

 map_units_indian_feet = 40264,

 map_units_indian_yards = 40265,

 map_units_indian_chains = 40266,

 map_units_decimal_degrees = 40252

};

typedef struct _VECTORFORMATSTRUCT {

 // mandatory part of structure

 DWORD dwSize; // size of this structure (including optional part)

 COLORREF mapBkColor; // background color of map

 // optional part of structure

 // content of optional part depends on implementation of plug-in module

 TCHAR fileName[_MAX_PATH];

} VECTORFORMATSTRUCT;

// private variables for each thread

typedef struct _THREADPARAMS {

 TCHAR buffer[sizeof(VECTORFORMATSTRUCT)];

 EXTENT extent;

} THREADPARAMS;

HINSTANCE hInstanceDll;

static DWORD dwTlsIndex; // address of shared memory

BOOL WINAPI DllMain(HINSTANCE hInstDll, DWORD fdwReason, LPVOID lpReserved)

{

 LPVOID lpvData;

 // Perform actions based on the reason for calling.

 switch(fdwReason)

 {

 case DLL_PROCESS_ATTACH:

 // Initialize once for each new process.

 // Return FALSE to fail DLL load.

 // It is always a good idea to save handle of instance of library

 hInstanceDll = hInstDll;

 // Allocate a TLS index.

 if ((dwTlsIndex = TlsAlloc()) == TLS_OUT_OF_INDEXES)

 return FALSE;

 // No break: Initialize the index for first thread.

 case DLL_THREAD_ATTACH:

 // Do thread-specific initialization.

 // Initialize the TLS index for this thread.

 lpvData = (LPVOID)new THREADPARAMS;

 if (lpvData == NULL) return FALSE;

 if (!TlsSetValue(dwTlsIndex, lpvData)) {

 delete (THREADPARAMS*)lpvData;

 return FALSE;

 }

 break;

 case DLL_THREAD_DETACH:

 // Do thread-specific cleanup.

 // Release the allocated memory for this thread.

 lpvData = TlsGetValue(dwTlsIndex);

 if (lpvData != NULL) {

 THREADPARAMS* threadParams = (THREADPARAMS*)lpvData;

 if (threadParams) delete threadParams;

 }

 break;

 case DLL_PROCESS_DETACH:

 // Perform any necessary cleanup.

 lpvData = TlsGetValue(dwTlsIndex);

 if (lpvData != NULL) {

 THREADPARAMS* threadParams = (THREADPARAMS*)lpvData;

 if (threadParams) delete threadParams;

 }

 // Release the TLS index.

 TlsFree(dwTlsIndex);

 break;

 }

 return TRUE;

Christine-GIS Public interface for vector data plug-ins
 version 1.1

- 16 -

}

// Function returns pointer to parameters for current thread

THREADPARAMS* GetThreadParams()

{

 THREADPARAMS* threadParams = (THREADPARAMS*)TlsGetValue(dwTlsIndex);

 if (!threadParams) {

 threadParams = new THREADPARAMS;

 if (!threadParams) return NULL;

 ZeroMemory(threadParams, sizeof(THREADPARAMS));

 if (!TlsSetValue(dwTlsIndex, (LPVOID)threadParams)) {

 delete threadParams;

 return NULL;

 }

 }

 return threadParams;

}

extern "C" __declspec(dllexport) void __cdecl BuildSpatialIndex(void* pStruct)

{

 // Build spatial index

 // ...

 // insert your code here

 // ...

 return;

}

extern "C" __declspec(dllexport) void* __cdecl ChangeSettings(HWND hWndParent, void* pStruct)

{

 THREADPARAMS* threadParams = GetThreadParams();

 if (!threadParams) return NULL;

 memcpy(threadParams->buffer, pStruct, ((VECTORFORMATSTRUCT*)pStruct)->dwSize);

 // Modify copy of structure pStruct and return pointer to modified structure

 // ...

 // insert your code here

 // ...

 // return threadParams->buffer;

 ::MessageBox(hWndParent, "There are no adjustable settings.", "Christine-GIS",

MB_OK|MB_ICONINFORMATION);

 return NULL;

}

extern "C" __declspec(dllexport) BOOL __cdecl ConvertVectorFormat2Shp(TCHAR* shpFileName, TCHAR*

vectorFormatFileName, HWND hWndMainFrame, void* pStruct, CRS2CRS Crs2Crs, BOOL bUseDefaultSettings)

{

 // Convert vector format to ESRI shapefile and save it to a file

 // ...

 // insert your code here

 // ...

 return FALSE;

}

extern "C" __declspec(dllexport) BOOL __cdecl ConvertShp2VectorFormat(TCHAR* shpFileName, TCHAR*

vectorFormatFileName, HWND hWndMainFrame, CRS2CRS Crs2Crs, BOOL bUseDefaultSettings, BYTE*

selection)

{

 // Convert ESRI shapefile to vector format and save it to a file

 // ...

 // insert your code here

 // ...

 return FALSE;

}

extern "C" __declspec(dllexport) void __cdecl Draw(HDC hDC, EXTENT* drawExtent, RECT* clipRect,

int unitSize, void* pStruct, CRS2CRS Crs2Crs, DWORD* pId1, volatile DWORD* pId2)

{

 // Work until *pId1 is equal to *pId2

 if (*pId1 != *pId2) return;

 THREADPARAMS* threadParams = GetThreadParams();

 if (!threadParams) return;

 FILE* f = fopen(((VECTORFORMATSTRUCT*)pStruct)->fileName, "rb");

 // ...

 // insert your code here

 // ...

 // Please don't forget about value of pId2. Check the value as often as possible

Christine-GIS Public interface for vector data plug-ins
 version 1.1

- 17 -

 // and reasonable. If the value is changed, clean up the memory and leave

 // the function immediately.

 fclose(f);

}

extern "C" __declspec(dllexport) EXTENT* __cdecl GetExtent(void* pStruct)

{

 THREADPARAMS* threadParams = GetThreadParams();

 if (!threadParams) return NULL;

 memset(&(threadParams->extent), 0, sizeof(EXTENT));

 FILE* f = fopen(((VECTORFORMATSTRUCT*)pStruct)->fileName, "rb");

 // Fill xMin, yMin, xMax and yMax members of threadParams->extent structure

 // ...

 // insert your code here

 // ...

 fclose(f);

 return &(threadParams->extent);

}

extern "C" __declspec(dllexport) TCHAR* __cdecl GetFormatName(void* pStruct)

{

 THREADPARAMS* threadParams = GetThreadParams();

 if (!threadParams) return NULL;

 threadParams->buffer[0] = '\0';

 // Fill the threadParams->buffer with name of vector format

 // ...

 // insert your code here

 // ...

 return threadParams->buffer;

}

extern "C" __declspec(dllexport) TCHAR* __cdecl GetFormatVersion(void* pStruct)

{

 THREADPARAMS* threadParams = GetThreadParams();

 if (!threadParams) return NULL;

 threadParams->buffer[0] = '\0';

 // Fill the threadParams->buffer with version of vector format

 // ...

 // insert your code here

 // ...

 return threadParams->buffer;

}

extern "C" __declspec(dllexport) DWORD __cdecl GetInterfaceVersion()

{

 // return interface version - 1.0

 return MAKELONG(0, 1);

}

extern "C" __declspec(dllexport) BOOL __cdecl HasSpatialIndex(void* pStruct)

{

 // ...

 // insert your code here

 // ...

 return FALSE;

}

extern "C" __declspec(dllexport) BYTE* __cdecl Initialize(TCHAR* fileName)

{

 THREADPARAMS* threadParams = GetThreadParams();

 if (!threadParams) return NULL;

 VECTORFORMATSTRUCT* pStruct = (VECTORFORMATSTRUCT*)threadParams->buffer;

 pStruct->dwSize = sizeof(VECTORFORMATSTRUCT);

 // mapBkColor member of VECTORFORMATSTRUCT is filled by

 // Christine before Draw function is calling

 lstrcpy(pStruct->fileName, fileName);

 // ...

 // insert your code here

 // ...

 return (BYTE*)pStruct;

}

Christine-GIS Public interface for vector data plug-ins
 version 1.1

- 18 -

extern "C" __declspec(dllexport) BOOL __cdecl NeedsReloading(void* pStruct)

{

 // ...

 // insert your code here, return TRUE if realoading is needed

 // ...

 return FALSE;

}

extern "C" __declspec(dllexport) void* __cdecl ReadSettingsFromStringLine(TCHAR* settingsStr,

void* pStruct)

{

 THREADPARAMS* threadParams = GetThreadParams();

 if (!threadParams) return NULL;

 memcpy(threadParams->buffer, pStruct, ((VECTORFORMATSTRUCT*)pStruct)->dwSize);

 VECTORFORMATSTRUCT* pVectorStruct = (VECTORFORMATSTRUCT*)threadParams->buffer;

 // Read settings from string line. Save

 // settings to pVectorStruct and return

 // pointer to it.

 // ...

 // insert your code here

 // ...

 // return (BYTE*)pVectorStruct;

 return pVectorStruct;

}

extern "C" __declspec(dllexport) void __cdecl Release(void* pStruct)

{

 // perform a neccessary clean up - destroy all object you created,

 // clean up memory, delete temporary files, etc.

 // ...

 // insert your code here

 // ...

 return;

}

extern "C" __declspec(dllexport) BOOL __cdecl Reload(void* pStruct)

{

 // ...

 // insert your code here, return TRUE if reloading is successful

 // ...

 return FALSE;

}

extern "C" __declspec(dllexport) void __cdecl RemoveSpatialIndex(void* pStruct)

{

 // ...

 // insert your code here

 // ...

 return;

}

extern "C" __declspec(dllexport) BOOL __cdecl SupportsConversionVectorFormat2Shp()

{

 // If not supported return FALSE, otherwise return TRUE.

 return FALSE;

}

extern "C" __declspec(dllexport) BOOL __cdecl SupportsConversionShp2VectorFormat()

{

 // If not supported return FALSE, otherwise return TRUE.

 return FALSE;

}

extern "C" __declspec(dllexport) BOOL __cdecl SupportsReloading()

{

 // If not supported return FALSE, otherwise return TRUE.

 return FALSE;

}

extern "C" __declspec(dllexport) BOOL __cdecl SupportsSpatialIndex()

{

 // If not supported return FALSE, otherwise return TRUE.

 return FALSE;

}

extern "C" __declspec(dllexport) TCHAR* __cdecl WriteSettingsToStringLine(void* pStruct)

{

Christine-GIS Public interface for vector data plug-ins
 version 1.1

- 19 -

 static TCHAR stringLine[8192]; // 8 kB buffer

 stringLine[0] = '\0';

 // Write settings from pStruct to stringLine

 // ...

 // insert your code here

 // ...

 return stringLine;

}

