Christine-GIS

Public interface for map service plug-ins

Specification of public interface version 1.0

)4

Christine-GIS Released: October 2005
Revised: March 2021

Christine-GIS Public interface for map service plug-ins
version 1.0

Content

1. Introduction
2. Used data types
3. How it works
3.1. Adding layer based on a map service to a view
3.2. Drawing and printing map provided by a map service
3.3. Getting information about map feature
3.4. Showing properties of theme based on a map service
3.5. Saving properties of theme based on a map service to a project file
3.6. Reading properties of theme based on a map service from a project file
4. Public interface of library
4.1. Minimal functional requirements ..
5. Installation of your own library ..M
5.1. Identification number of type of map service (ID) |
6. Libraries that come with Christine .12
7. Example ... 13
7.1. How to compile the example ... 13
7.2. Source code ... 13

OCONOOOOONOTOTWN

© 2005-2021 Josef Genserek
All Rights Reserved.
The information contained in this document is subject to change without notice.

The names of other companies and products herein are trademarks or registered trademarks of their
respective trademark owners.

-1-

Christine-GIS Public interface for map service plug-ins
version 1.0

1. Introduction

Document describes interface for dynamic linked libraries, which can be used for reading and drawing maps
provided by a web map service. The interface allows you create your own library and in this way you can
enable communication between Christine and a map service. If you create your own library, it is strictly
recommended to create an installation program for installing the library. See Installation of your own library
chapter for some hints.

Document describes version 1.0 of the interface. The interface is supported by Christine-GIS version 2.0 and
higher. Christine-GIS Viewer does not support this interface. The material in this document reflects the
information available at the time of publication and is essentially identical to the information contained in the
Christine's help file. In some cases, more up-to-date information may be available at Christine's web site
(www.christine-gis.com).

Christine-GIS Public interface for map service plug-ins
version 1.0

2. Used data types

Most of used data types are common data types used by Microsoft Windows API.

BOOL - A boolean type (should be TRUE or FALSE), stored as signed integer

COLORREEF - A 32-bit value used to specify a RGB color. The low-order byte contains a value for the
relative intensity of red; the second byte contains a value for green; and the third byte contains a value for
blue. The high-order byte must be zero. The maximum value for a single byte is OxFF.

double - A 64-bit signed floating point number

DWORD - A 32-bit unsigned integer

EXTENT - Structure that defines ranges of X, Y, Z coordinates and M values
typedef struct EXTENT ({

double xMin; // specifies minimum value of X coordinate

double yMin; // specifies minimum value of Y coordinate

double xMax; // specifies maximum value of X coordinate

double yMax; // specifies maximum value of Y coordinate

double zMin; // specifies minimum value of Z coordinate (ignored)
double zMax; // specifies maximum value of Z coordinate (ignored)
double mMin; // specifies minimum of M value (ignored)

double mMax; // specifies maximum of M value (ignored)

} EXTENT;

EXTENT* - A pointer to extent structure

FALSE - Boolean value, stored as signed integer with zero value
HWND - Handle to a window

NULL - Zero value

POINT - Structure that defines the x- and y- coordinates of a point
typedef struct tagPOINT {

LONG x; // specifies the x-coordinate of the point
LONG vy; // specifies the y-coordinate of the point
} POINT;

POINT* - A pointer to point structure

SIZE - The SIZE structure specifies the width and height of a rectangle
typedef struct tagSIZE {

LONG cx; // Specifies the rectangle's width
LONG cy; // Specifies the rectangle's height
} SIZE;

SIZE* - A pointer to size structure

TCHAR?* - A pointer to array of chars (string)

TRUE - Boolean value, stored as non zero signed integer

void - Used as a function’s return type, specifies that the function does not return a value
void* - A pointer to unspecified data type or structure ("universal pointer")

WMSCONNECCTION - connection structure for saving connection parameters and any other data you need
typedef struct WMSCONNECTION {

-3-

Christine-GIS Public interface for map service plug-ins

version 1.0
// mandatory part of structure
DWORD dwSize; // size of this structure (including optional part)
TCHAR recommendedThemeName[128]; // recommended name of theme
int outputRasterFormat; // ID of output raster format generated
// by the mmap service
COLORREF bgColor; // background color of map

// optional part of structure
// content of optional part depends on implementation of plug-in module
} WMSCONNECTION;

WORD - A 16-bit unsigned integer

Christine-GIS Public interface for map service plug-ins
version 1.0

3. How it works

Christine calls functions of the public interface described in chapter Public interface of library when it needs.
Library is released after each function call, except these cases:

O calling BOOL Connect (HWND hWndParent, TCHAR** formatNames, int* formatlIDs,
void* pSettingsStruct) function before calling function void*
GetConnectionSettingsStruct (). It is happen when user adds theme based on a map service
or changes properties of the theme.

O calling BOOL ReadSettingsFromStringLine (TCHAR* settingsStr) function before calling
function void* GetConnectionSettingsStruct (). Itis happen when user opens a project that
contains a theme based on a map service.

3.1 Adding layer based on a map service to a view

Christine looks through Windows registry for available types of known map services. Christine uses values of
WMSName and FormatID keys in order to complete list of supported types of map services and fills combo
box in Add Map Service dialog. In this dialog user choose type of map service. When user chooses type of
map service, Christine will look for value of LibFileName key in Windows registry in order to be able to load
the library. If user click on Connect To Map Service button, Christine will load the library and call Connect
function. The Connect function should show dialog to allow user to connect a map service. Parameter
pSettingsStruct in Connect function is NULL. If connect operation was successful the Connect function will
return TRUE. After this Christine calls GetConnectionSettingsStruct function, allocates memory and stores
connection structure. The connection structure is used by GetMap and GetDescriptionString functions. So
you can use the structure for sharing any data you need among functions.

List of called functions during the operation:

BOOL Connect (HWND hWndParent, TCHAR** formatNames, TCHAR** formatMINEs, int*
formatIDs, void* pSettingsStruct)

void* GetConnectionSettingsStruct ()

EXTENT* GetExtent (void* pSettingsStruct)

BOOL IsQueryable (void* pSettingsStruct)

3.2 Drawing and printing map provided by a map service

Christine loads library to memory and calls GetMap function. Function GetMap uses connection settings
structure in order to connect map service, transfers image data and saves it as image file using path and file
name specified in fileName parameter. After this releases the library and draws saved image file.

List of called functions during the operation:

void GetMap (void* pSettingsStruct, TCHAR* fileName, HWND hWndMainFrame, EXTENT*
mapExtent, SIZE* imgSize, DWORD* pIdl, volatile DWORD* pId2)

Christine-GIS Public interface for map service plug-ins
version 1.0

3.3 Getting information about map feature

After user clicks into view which has first active theme based on a map service by Info tool 2' Christine
loads library to memory and calls GetFeaturelnfo function. The way how Christine shows informations
depend on returned value of GetFeaturelnfo function. For detailed informations about possible returned
values see chapter 4.

List of called functions during the operation:

TCHAR* GetFeaturelInfo (void* pSettingsStruct, TCHAR* fileName, HWND
hWwndMainFrame, EXTENT* locality)

3.4 Showing properties of theme based on map service

Before properties dialog is shown Christine calls GetExtent, GetServerURL and GetServiceName functions
in order to be able to show description of map service. There are property sheet caled Map Service in dialog
Theme Properties. The property sheet contains Change Settings button. Users can use the button for
changing settings of connected map service. Clicking on the button calls Connect and
GetConnectionSettingsStruct functions. Parameter pSettingsStruct in Connect function contains pointer to
structure that describes current settings of connection. Prevent users from changing basic parameters of
connection like URL or map service, but users should be able to change some others settings like visibility of
layers, output raster format and so on.

List of called functions during the operation:

BOOL Connect (HWND hWndParent, TCHAR** formatNames, TCHAR** formatMINEs, int*
formatIDs, void* pSettingsStruct)

void* GetConnectionSettingsStruct ()

EXTENT* GetExtent (void* pSettingsStruct)

TCHAR* GetServerURL (void* pSettingsStruct)

TCHAR* GetServiceName (void* pSettingsStruct)

BOOL IsQueryable (void* pSettingsStruct)

3.5 Saving properties of theme based on a map service to a project file

Christine loads library to memory and calls WriteSettingsToStringLine function. Function
WriteSettingsToStringLine uses connection settings structure in order to create string line with settings of
theme based on a map service. Content of the string line depends on your needs. Function
WriteSettingsToStringLine returns pointer to the string line. The string line must be terminated by binary zero
(it must be a null-terminated string). Christine saves the string line into project file as value of key called
mapServiceSettings.

List of called functions during the operation:

TCHAR* WriteSettingsToStringLine (void* pSettingsStruct)

Christine-GIS Public interface for map service plug-ins
version 1.0

3.6 Reading properties of theme based on a map service from a project file

Christine loads library to memory and calls ReadSettingsFromStringLine function. Function
ReadSettingsFromStringLine uses a string line with saved settings of theme based on a map service in order
to create connection settings structure. Content of the string line was created by WriteSettingsToStringLine
function (see 3.5 chapter). The string line is terminated by binary zero (it is a null-terminated string). Function
ReadSettingsFromStringLine will return TRUE if connection settings structure is created successfully,
otherwise will return FALSE. If connection settings structure is created successfully, Christine calls
GetConnectionSettingsStruct function, creates theme and releases library.

List of called functions during the operation:

void* GetConnectionSettingsStruct ()

EXTENT* GetExtent (void* pSettingsStruct)

BOOL IsQueryable (void* pSettingsStruct)

BOOL ReadSettingsFromStringLine (TCHAR* settingsStr)

Christine-GIS Public interface for map service plug-ins
version 1.0

4. Public interface of library

This chapter describes public interface of the library. Each function in the public interface has exactly defined
behaviour and it is called in situations described in chapter How it works.

BOOL Connect (HWND hWndParent, TCHAR** formatNames, TCHAR** formatMINEs, int*
formatIDs, void* pSettingsStruct)

Shows dialog where user can specify parameters of connection and connect map service. Parameter
hwndParent is handle of parent window for dialog. Parameter formatNames is pointer to array of names of
raster formats. Array is terminated by NULL pointer. Use the list to allow user specify raster format generated
by map service. Parameter formatMINEs is array of MINE strings of raster formats that are listed in
formatNames array. Order of format names and MINE strings in these arrays is the same, so first raster
format has name formatNames[0] and MINE string MINES[0]. Parameter formatIDs is array of identification
numbers of raster formats that are listed in formatNames array. Order of format names and format IDs in
these arrays is the same, so first raster format has name formatNames[0] and indentification number
formatlDs[0]. Parameter pSettingsStruct is NULL or contains pointer to structure that describes current
settings of connection (see 3.1 and 3.4 chapters). This function has to fill or modify connection structure in
order to allow Christine to save the structure. If connection was successful function will return TRUE,
otherwise will return FALSE.

void* GetConnectionSettingsStruct ()
Returns pointer to structure that describes settings of connection and possibly stores any other informations
you need.

EXTENT* GetExtent (void* pSettingsStruct)
Returns pointer to extent of all data from which is map created in map units. Parameter pSettingsStruct is a
structure saved during connection process, see chapter 3.1 for details.

TCHAR* GetFeaturelInfo (void* pSettingsStruct, TCHAR* fileName, HWND
hWwndMainFrame, EXTENT* locality)

The response to GetFeaturelnfo request is always a computer file that is transferred over the internet from
the server to the client. The file contains information about a map feature. Format of the file is indicated by
return value, see bellow. Parameter fileName is full file name of the file. Use the file nhame for saving
transferred file. Parameter pSettingsStruct is pointer to a structure saved during connection process, see
chapter 3.1 for details. Parameter hwndMainFrame is handle to Christine's main window. Parameter locality
defines neighbourhood of point on map for which user wants to obtain more informations. Parameter locality
is in map coordinates and represents square of five pixels width and five pixel height on user's screen. In the
center of the square is point for which user wants to obtain more informations.

——locality—:vHaz

C point on map for which user wants to obtain more informations

—locality—>vHin

“locality—ruMax

“locality—:=Min

Function will return NULL if failed, otherwise will return pointer to MINE string that specifies format of file with
informations. Christine-GIS version 5.x accepts these values:
O ‘"text/plain” for plain text. These informations will be shown using Report metod from class MsgBox
(see to Christine's script language manual).
O ‘“text/richtext" for RTF text. These informations will be shown using Report metod from class MsgBox
(see to Christine's script language manual).
o ‘“text/html" for HTML text. These informations will be shown using ReportHTML metod from class
MsgBox (see to Christine's script language manual).
O an other MINE string for a known raster format. These informations will be shown using ShowBmp
metod from class MsgBox (see to Christine's script language manual).

-8-

Christine-GIS Public interface for map service plug-ins
version 1.0

DWORD GetInterfaceVersion ()
Returns version of the interface. In high word is major version (1) and in low word is minor version (0).

void GetMap (void* pSettingsStruct, TCHAR* fileName, HWND hWndMainFrame, EXTENT*
mapExtent, SIZE* imgSize, DWORD* pIdl, volatile DWORD* pId2)

The response to GetMap request is always a computer file that is transferred over the internet from the
server to the client. The file represents a map image in ouput raster format accepted by Connect function.
Parameter fileName is full file name of the raster file. Use the file name for saving transferred raster file.
Parameter pSettingsStruct is a structure saved during connection process, see chapter 3.1 for details.
Parameter hwndMainFrame is handle to Christine's main window. Parameter mapExtent is required extent
for map in map units. Parameter imgSize is required size of image file in pixels. Parameters pld1 and pld2
are pointers to numeric identificators. If the values of identificators are the same you can continue
transmission of data, but if pld2 is changed you should stop transmission immediately, clean up the memory
and leave the function.

TCHAR* GetServerURL (void* pSettingsStruct)
Returns pointer to string that contains URL of the map service.

TCHAR* GetServiceName (void* pSettingsStruct)
Returns pointer to string that contains name of the map service.

BOOL IsQueryable (void* pSettingsStruct)
Returns TRUE if map service is queryable. It means that map service is able to handle GetFeaturelnfo
request.

BOOL ReadSettingsFromStringLine (TCHAR* settingsStr)
Reads settings from string line when a project file is openning.

TCHAR* WriteSettingsToStringLine (void* pSettingsStruct)
Returns pointer to string line with settings. The string line is written into Christine's project file when you save
project.

4.1 Minimal functional requirements

Minimal requirement is to draw map in a view and to print the map to printer. To create functional library that
do this you must implement following functions with described behaviour:

BOOL Connect (HWND hWndParent, TCHAR** formatNames, TCHAR** formatMINEs, int*
formatIDs, void* pSettingsStruct)
Allows users to connect map service and configure it. Creates and fills connection structure.

void* GetConnectionSettingsStruct ()
Returns pointer to connection structure.

EXTENT* GetExtent (void* pSettingsStruct)
Returns pointer to extent of all data from which is map created.

TCHAR* GetFeaturelInfo (void* pSettingsStruct, TCHAR* fileName, HWND
hWwndMainFrame, EXTENT* locality)
Returns NULL.

DWORD GetInterfaceVersion ()
Returns version of the interface. In high word is major version (1) and in low word is minor version (0).

void GetMap (void* pSettingsStruct, TCHAR* fileName, HWND hWndMainFrame, EXTENT*
mapExtent, SIZE* imgSize, DWORD* pIdl, volatile DWORD* pId2)
Saves map to file.

TCHAR* GetServerURL (void* pSettingsStruct)
Returns pointer to string that contains URL of the map service.

-9-

Christine-GIS Public interface for map service plug-ins
version 1.0

TCHAR* GetServiceName (void* pSettingsStruct)
Returns pointer to string that contains name of the map service.

BOOL IsQueryable (void* pSettingsStruct)
Returns FALSE.

BOOL ReadSettingsFromStringLine (TCHAR* settingsStr)
Reads settings from string line when a project file is openning.

TCHAR* WriteSettingsToStringLine (void* pSettingsStruct)
Writes settings to string line.

-10 -

Christine-GIS Public interface for map service plug-ins
version 1.0

5. Installation of your own library

It is strictly recommended to create an installation program for installing the library. Installation program must
place library file to subfolder dlls in Christine's installation folder. Installation program must also write
following information to Windows registry:

Key:

HKEY_LOCAL_MACHINE\Software\Christine-GIS\5.xX\WMS\[ID of type of map service]

Values:

Name Value Type Max. length (byte)
LibFileName [library.dll] REG_Sz 255 Mandatory
WMSName Name of type of map service REG_Sz 255 Mandatory
FormatID [ID of map service format] REG_DWORD 4 Mandatory

Example for OGC WMS:

Key:
HKEY_LOCAL_MACHINE\Software\Christine-GIS\5.x\WMS\1002
Values:

Name Value

LibFileName ogcwms.dll

WMSName OGC Web Map Service

FormatID 1002

Note: Value FormatlD must be the same as name of the key.

5.1 Identification number of type of map service (ID)

If you want to create your own library for showing maps provided by a web map service, look at Christine's
web site for free IDs. After you choose a free ID, contact us and we will publish your choosen ID on
Christine's web site to avoid problems with duplicity. Format ID is used internally by Christine and by these
metods in Christine's script language: GetType(Number nType) from class Theme, ExportToBmp(String
sFullFileName, Number nType, Rect extent, Number nWidth, Number nHeight, Bool bCreateW orldFile) and
AddTheme(String sFullFileName, Number nType) from class View, ExportToVectorFormat(String
sFullFileName, Number nFormatID, Bool bUseDefaultSettings) from class FTheme, Export(String
sFullFileName, Number nOutputType) from class DSCTheme, ShowBmp(String sFullFileName, Number
nDelay, Bool bFrame, Number nType) from class MsgBox.

Recommended ranges of format IDs are following:

0 - 1000 for raster and vector data based on files (typically stored on a file system), range 0 - 100 is reserved
for Christine-GIS, 101 - 1000 is available for third-party developers

1001 - 2000 for raster and vector data based on a web service (typically generated by a map server and sent
to Christine), range 1001 - 1100 is reserved for Christine-GIS, 1101 - 2000 is available for third-party
developers

2001 - 3000 for raster and vector data stored in a geodatabase (for future use, not supported yet), range
2001 - 2100 is reserved for Christine-GIS, 2101 - 3000 is available for third-party developers

-11 -

Christine-GIS Public interface for map service plug-ins
version 1.0

6. Libraries that come with Christine

One library comes with Christine-GIS version 5.x, that has implemented this interface. It is placed in
subfolder dlls in Christine's installation folder.

Type of map service: OGC Web Map Service
Library file name: ogcwmes.dll

ID: 1002

Version of interface: 1.0

-12 -

Christine-GIS Public interface for map service plug-ins
version 1.0

7. Example

In this chapter we offer you C++ source code of an empty framework of dynamic linked library that uses the
interface. Code is tested in Microsoft Visual Studio 2012 enviroment.

7.1 How to compile the example

This short chapter describes neccessary steps to compile source code in chapter 7.2. using Microsoft Visual
Studio 2012. Simply follow the instructions bellow.

O Run Microsoft Visual Studio 2012.

QO From menu File select New and then choose Project. From categories of project types select Win32
in Visual C++ section. From installed templates select Win32 Project. Choose location for new
project that will be created and fill project name, then click OK button. In following two steps wizard
select ,DLL" option and click Finish button.

A project with dlimain.cpp file is created.

Copy source code from chapter 7.2. to dlimain.cpp file.

From Project menu choose projectName Properties (Alt + F7). Select Configuration
Properties/General section and set ,Character Set” option to ,Not Set“. Now select Configuration
Properties/C/C++/Preprocesor and add to Preprocessor Definitions

». CRT_SECURE_NO_WARNINGS*.

Q From Build menu choose Build Solution command (F7).

ooo

7.2 Source code

#include "stdafx.h"
#include <stdio.h>
#include <stdlib.h>
#include <windows.h>

typedef struct EXTENT { // extent of data
double xMin;
double yMin;
double xMax;
double yMax;
double zMin;
double zMax;
double mMin;
double mMax;
} EXTENT;

// connection structure for saving connection
// parameters and any other data you need
typedef struct WMSCONNECTION {

// mandatory part of structure

DWORD dwSize; // size of this structure (including optional part)
TCHAR recommendedThemeName [128]; // recommended name of theme
int outputRasterFormat; // ID of output raster
// format generated by the mmap service
COLORREF bgColor; // background color of map
// optional part of structure - depend on your needs
//
// declare your own members of connection structure here
//

EXTENT extent;
TCHAR buffer[1024];
} WMSCONNECTION;

HINSTANCE hInstanceDll;
static DWORD dwTlsIndex; // address of shared memory

-13-

Christine-GIS Public interface for map service plug-ins

version 1.0

BOOL WINAPI DllMain (HINSTANCE hInstDl1l, DWORD fdwReason, LPVOID lpReserved)

{

}

LPVOID lpvData;

// Perform actions based on the reason for calling.
switch (fdwReason)
{
case DLL_PROCESS ATTACH: {
// Initialize once for each new process.
// Return FALSE to fail DLL load.

// it is always a good idea to save handle of instance of library
hInstanceDll = hInstDll;

// Allocate a TLS index.
if ((dwTlsIndex = TlsAlloc()) == TLS_OUT_OF INDEXES)
return FALSE;
// No break: Initialize the index for first thread.
}
case DLL_THREAD_ATTACH:
// Do thread-specific initialization.
// Initialize the TLS index for this thread.
lpvData = (LPVOID)new BYTE[sizeof (WMSCONNECTION)];
if (lpvData == NULL) return FALSE;
if (!TlsSetValue (dwTlsIndex, lpvData)) {
delete[] lpvData;
return FALSE;
}

break;

case DLL_THREAD_DETACH:
// Do thread-specific cleanup.
// Release the allocated memory for this thread.
lpvData = TlsGetValue (dwTlsIndex) ;
if (lpvData != NULL) {
BYTE* wmsConnection = (BYTE*)lpvData;
if (wmsConnection) delete[] wmsConnection;
}

break;

case DLL_PROCESS DETACH:
// Perform any necessary cleanup.
lpvData = TlsGetValue (dwTlsIndex) ;
if (lpvData != NULL) {
BYTE* wmsConnection = (BYTE*)lpvData;
if (wmsConnection) delete[] wmsConnection;
}
// Release the TLS index.
TlsFree (dwTlsIndex) ;
break;

}

return TRUE;

extern "C" _ declspec(dllexport) BOOL _ cdecl Connect (HWND hWndParent, TCHAR** formatNames,
TCHAR** formatMINEs, int* formatIDs, void* pSettingsStruct)

{

BYTE* lpvData = (BYTE*)TlsGetValue (dwTlsIndex) ;
if (!lpvData) {
lpvData = new BYTE[sizeof (WMSCONNECTION)];
if (!lpvData) return FALSE;
if (!TlsSetValue (dwTlsIndex, lpvData)) {
delete[] lpvData;
return FALSE;
}
}

// copy connection structure
if (pSettingsStruct) {
delete[] lpvData;
lpvData = new BYTE[((DWORD*)pSettingsStruct) [0]];
if (!lpvData) return FALSE;
memcpy (lpvData, pSettingsStruct, ((DWORD*)pSettingsStruct) [0]);
if (!TlsSetValue (dwTlsIndex, lpvData)) {
delete[] lpvData;
return FALSE;
}
}
// Initialize connection structure
WMSCONNECTION* wmsConnection = (WMSCONNECTION*) lpvData;
wmsConnection->dwSize = sizeof (WMSCONNECTION) ;

-14 -

Christine-GIS Public interface for map service plug-ins

version 1.0
lstrcpy (wmsConnection->recommendedThemeName, "aThemeName") ;
wmsConnection->outputRasterFormat = 7; // PNG
wmsConnection->bgColor = RGB(255,255,255); // white color
// Show a dialog to allow user to connect a map service
// or modify connection and settings of map service.

// If connection is successful, disconnect the map service,
// save connection parameters and any other data you need to
// connection structure and return TRUE. If connection is not successful
// return FALSE;
/]
// insert your code here
//
return TRUE;
}
extern "C" _ declspec(dllexport) void* _ cdecl GetConnectionSettingsStruct ()
{
// return poiner to connection structure
// Christine saves it for you
return TlsGetValue (dwTlsIndex) ;
}
extern "C" declspec(dllexport) EXTENT* cdecl GetExtent (void* pSettingsStruct)
{
// pointer to connection structure
WMSCONNECTION* wmsConnection = (WMSCONNECTION*)pSettingsStruct;
memset (& (wmsConnection->extent), 0, sizeof (EXTENT)) ;
// Fill xMin, yMin, xMax and yMax members of extent structure
//
// insert your code here
/7
return & (wmsConnection->extent) ;
}
extern "C" declspec(dllexport) TCHAR* _ cdecl GetFeatureInfo(void* pSettingsStruct, TCHAR*

fileName, HWND hWndMainFrame, EXTENT* locality)
{
BYTE* lpvData = (BYTE*)TlsGetValue (dwTlsIndex) ;
if (!lpvData) delete[] lpvData;
// copy connection structure
lpvData = new BYTE[((DWORD*)pSettingsStruct) [0]];
if (!lpvData) return NULL;
memcpy (lpvData, pSettingsStruct, ((DWORD*)pSettingsStruct) [0]);
if (!TlsSetValue (dwTlsIndex, lpvData)) {
delete[] lpvData;
return NULL;
}
WMSCONNECTION* wmsConnection = (WMSCONNECTIONY*)lpvData;

// Coordinate of point for which user wants to obtain more informations
double x = locality->xMin + ((locality->xMax - locality->xMin) / 2);
double y = locality->yMin + ((locality->yMax - locality->yMin) / 2);

// Get information about a map feature and save it to file named fileName
/..
// insert your code here

//

// if all is successfully done, return pointer to MINE string
// that indicates output format, otherwise return NULL

// return wmsConnection->buffer;
return NULL;
}

extern "C" declspec(dllexport) DWORD cdecl GetInterfaceVersion ()
{

// return interface version (1.0)

return MAKELONG (0, 1);

-15 -

Christine-GIS Public interface for map service plug-ins

version 1.0

extern "C" declspec(dllexport) void cdecl GetMap (void* pSettingsStruct, TCHAR* fileName, HWND
hWndMainFrame, EXTENT* mapExtent, SIZE* imgSize, DWORD* pIdl, volatile DWORD* pId2)

{

}

BYTE* lpvData = (BYTE*)TlsGetValue (dwTlsIndex) ;
if (!lpvData) delete[] lpvData;
// copy connection structure
lpvData = new BYTE[((DWORD*)pSettingsStruct) [0]];
if (!lpvData) return;
memcpy (lpvData, pSettingsStruct, ((DWORD*)pSettingsStruct) [0]);
if (!TlsSetValue (dwTlsIndex, lpvData)) {
delete[] lpvData;
return;
}
WMSCONNECTION* wmsConnection = (WMSCONNECTION*)lpvData;

// Work until *pIdl is equal to *pId2
if (*pIdl != *pId2) return;

/..

// insert your code here

/]

// Please don't forget about value of pId2. Check the value

// as often as possible and reasonable. If the value is changed,
// cleanup the memory and leave the function immediately.

//

extern "C" declspec(dllexport) TCHAR* cdecl GetServiceName (void* pSettingsStruct)

{

}

BYTE* lpvData = (BYTE*)TlsGetValue (dwTlsIndex);
if (!lpvData) delete[] lpvData;
// copy connection structure
lpvData = new BYTE[((DWORD*)pSettingsStruct) [0]];
if (!lpvData) return NULL;
memcpy (lpvData, pSettingsStruct, ((DWORD*)pSettingsStruct) [0]);
if (!TlsSetValue (dwTlsIndex, lpvData)) {
delete[] lpvData;
return NULL;
}
WMSCONNECTION* wmsConnection = (WMSCONNECTION*)lpvData;
wmsConnection->buffer[0] = '"\0';

// Fill the wmsConnection->buffer with name of map service
//
// insert your code here

//

return wmsConnection->buffer;

extern "C" _ declspec(dllexport) TCHAR* _ cdecl GetServerURL(void* pSettingsStruct)

{

BYTE* lpvData = (BYTE*)TlsGetValue (dwTlsIndex) ;
if (!lpvData) delete[] lpvData;
// copy connection structure
lpvData = new BYTE[((DWORD*)pSettingsStruct) [0]];
if (!lpvData) return NULL;
memcpy (lpvData, pSettingsStruct, ((DWORD*)pSettingsStruct) [0]);
if (!TlsSetValue (dwTlsIndex, lpvData)) {
delete[] lpvData;
return NULL;
}
WMSCONNECTION* wmsConnection = (WMSCONNECTION*)lpvData;
wmsConnection->buffer[0] = "\0';

// Fill wmsConnection->buffer with URL of map service
//
// insert your code here

//

return wmsConnection->buffer;

-16 -

Christine-GIS Public interface for map service plug-ins

version 1.0
extern "C" declspec(dllexport) BOOL cdecl IsQueryable(void* pSettingsStruct)
{

BYTE* lpvData = (BYTE*)TlsGetValue (dwTlsIndex) ;
if (!lpvData) delete[] lpvData;
// copy connection structure
lpvData = new BYTE[((DWORD*)pSettingsStruct) [0]];
if (!lpvData) return FALSE;
memcpy (lpvData, pSettingsStruct, ((DWORD*)pSettingsStruct) [0]);
if (!TlsSetValue (dwTlsIndex, lpvData)) {
delete[] lpvData;
return FALSE;
}
WMSCONNECTION* wmsConnection = (WMSCONNECTION*) lpvData;
// Check if map service is queryable
/]
// insert your code here
/7
// return TRUE if map service is queryable, otherwise return FALSE
return FALSE;
}
extern "C" declspec(dllexport) BOOL _ cdecl ReadSettingsFromStringLine (TCHAR* settingsStr)
{
BYTE* lpvData = (BYTE*)TlsGetValue (dwTlsIndex);
if (!lpvData) delete[] lpvData;
// create connection structure
lpvData = new BYTE[sizeof (WMSCONNECTION)];
if (!lpvData) return FALSE;
if (!TlsSetValue (dwTlsIndex, lpvData)) {
delete[] lpvData;
return FALSE;
}
// Initialize connection structure
WMSCONNECTION* wmsConnection = (WMSCONNECTION*) lpvData;
wmsConnection->dwSize = sizeof (WMSCONNECTION) ;
lstrcpy (wmsConnection->recommendedThemeName, "aThemeName") ;
wmsConnection->outputRasterFormat = 7; // PNG
wmsConnection->bgColor = RGB(255,255,255); // white color
// £ill connection structure
/]
// insert your code here
//
// 1f connection structure is successfully filled return TRUE
return TRUE;
}
extern "C" _ declspec(dllexport) TCHAR* _ cdecl WriteSettingsToStringLine (void* pSettingsStruct)

{
BYTE* lpvData = (BYTE*)TlsGetValue (dwTlsIndex) ;
if (!lpvData) delete[] lpvData;
// copy connection structure
lpvData = new BYTE[((DWORD*)pSettingsStruct) [0]];
if (!lpvData) return NULL;
memcpy (lpvData, pSettingsStruct, ((DWORD*)pSettingsStruct) [0]);
if (!TlsSetValue (dwTlsIndex, lpvData)) {
delete[] lpvData;
return NULL;
}
WMSCONNECTION* wmsConnection = (WMSCONNECTIONY*)lpvData;
wmsConnection->buffer[0] = "\0';

// £ill wmsConnection->buffer
//
// insert your code here

//

return wmsConnection->buffer;

-17 -

